Фото: пресс-служба ИКИ РАH.

Открылась бурная жизнь галактических скоплений

Бурную жизнь скоплений галактик показали телескопы обсерватории «Спектр-РГ», – сообщила пресс-служба ИКИ РАН.

Телескопы, работающие вблизи точки L2 уже более года, дали очень подробные рентгеновские изображения скопления Кома. Благодаря им ученым удалось в деталях исследовать невероятно бурный и длительный процесс слияния скоплений.

Скопления галактик — это динамические системы, которые непрерывно растут за счет аккреции больших и маленьких порций материи. Такой процесс должен приводить к сложной структуре в распределении темной материи внутри скоплений, а также к ударным волнам и «холодным фронтам» в горячем газе.

Скопление галактик в созвездии Волосы Вероники (также известное как Кома) — особенное. Оно очень массивное — содержит тысячи галактик, и близкое — находится на расстоянии менее 100 Мпк. Это первый объект, в котором было установлено присутствие «темной материи» (скрытой массы). Это сделал астрофизик Фриц Цвикки в 1933 году. В 1950-х годах оно стало первым скоплением, в котором обнаружили диффузное радиогало.

В конце 1960-х годов возникла идея, что «темной материей» может быть горячий межгалактический газ. И действительно вскоре горячий газ в Коме был обнаружен первым рентгеновским спутником Uhuru (NASA). Более того, оказалось, что именно горячий газ составляет почти 80% всего нормального «барионного» вещества, в то время как звезды и галактики скопления Кома содержат не более 20% барионов скопления (барионы — семейство элементарных частиц, к которому относятся в том числе ядерные частицы протоны и нейтроны).

Но и горячего газа оказалось недостаточным для объяснения феномена «темной материи» — последней всё равно должно было быть гораздо больше. Полная масса барионов в горячем газе и в звездах скопления галактик не превышает 15 % от полной массы скопления.

Рентгеновские наблюдения пока не решили полностью проблемы «темной материи», но существенно обогатили знания астрофизиков о том, что происходит в скоплениях галактик. Благодаря рентгеновской астрономии можно определять плотность, температуру и другие свойства горячего газа, заполняющего скопление, «видеть», как он распределен в пространстве. Наблюдения же за самим горячим газом стали важнейшим источником информации и о параметрах невидимого «темного» вещества. Именно оно определяет гравитационный потенциал скопления (если говорить проще, насколько сильно скопление «притягивает» к себе вещество) и то, как в нем распределен сам горячий газ.

Близость Комы делает ее привлекательной для исследований во всех энергетических диапазонах, хотя огромные угловые размеры скопления зачастую усложняют задачу: телескопы с большим полем зрения обычно не могут «увидеть» всех деталей скопления, а более «чувствительные» телескопы не способны оглядеть его целиком.

Рентгеновская обсерватория «Спектр-РГ» с телескопами eROSITA и ART-XC им. М. Н. Павлинского на борту была специально разработана для решения таких задач. В режиме сканирования ей удалось построить полную карту всего скопления. На рентгеновском изображении, полученном телескопом СРГ/eROSITA в результате двух сеансов растровых наблюдений, виден участок неба размером ~10 Мпк (на расстоянии скопления), что как минимум в два раза больше вириального радиуса скопления (в этих пределах которого сосредоточена большая часть массы скопления).

Как утверждают ученые, численное моделирование позволяет предсказать некоторые явления, связанные с этим конкретным этапом слияния, которые можно наблюдать. Головная ударная волна, созданная группой NGC 4839 во время ее первого прохода (примерно миллиард лет назад), теперь должна располагаться на окраине скопления, а газ, вытесненный из ядра основного скопления, должен падать обратно, образуя «вторичную» ударную волну. Новые данные позволяют предположить, что структура длиной в несколько мегапарсек, наблюдаемая справа от ядра, представляет собой именно «вторичную» ударную волну.

Еще одно интересное следствие сценария слияния состоит в том, что радиогало, ограниченное вторичной ударной волной, фактически прошло через две ударные волны — первый раз через головную ударную волну, вызванную первым пролетом NGC 4839 через ядро Комы со скоростью порядка 3500 километров в секунду, и совсем недавно — через вторичную ударную волну. Этот процесс, сопровождающийся ускорением частиц и сжатием газа, способен замедлить быстрое «старение» релятивистских частиц в радиогало, теряющих энергию из за синхротронных потерь в магнитном поле на радиоизлучение и на обратное комптоновское рассеяние на фотонах реликтового излучения.

«Возможно, что и в других скоплениях, имеющих радиогало, работает подобный механизм, — говорит академик Евгений Чуразов, ведущий автор статьи. — А наша следующая задача — это исследовать самые внешние области скопления, где газ, падающий на Кому, тормозится на ударной волне и становится частью скопления».

«Первая статья по длительным наблюдениям скопления галактик Кома уже направлена в журнал и опубликована в виде астро-препринта, — говорит научный руководитель обсерватории «Спектр-РГ» академик Рашид Сюняев. — Работа над данными этих наблюдений продолжается и обещает немало новых интересных результатов о физике скопления и поведении темного вещества в нем.

Скопление Кома — это самое глубокое поле, исследованное российским консорциумом обсерватории «Спектр-РГ» в ходе ее перелета с Земли в точку L2. Глубина этого поля позволяет детально исследовать не только интереснейшее скопление Кома, но и искать в рентгеновских лучах проявления других астрономических объектов, входящих в окружающее его сверхскопление галактик Кома. А это сверхскопление содержит более 3000 галактик.

Ну и, конечно же, мы надеемся открыть на периферии этого поля (вне пределов яркого скопления на рис.1) квазары — аккрецирующие сверхмассивные черные дыры на больших красных смещениях, а также увидеть и нанести на карту неба немало далеких скоплений галактик, находящихся далеко за скоплением Кома на рекордных расстояниях».
***
Космический аппарат «Спектр-РГ», разработанный в АО «НПО Лавочкина» (входит в Госкорпорацию «Роскосмос»), был запущен 13 июля 2019 г. с космодрома Байконур. Он создан с участием Германии в рамках Федеральной космической программы России по заказу Российской академии наук. Обсерватория оснащена двумя уникальными рентгеновскими зеркальными телескопами: ART-XC (ИКИ РАН, Россия) и eROSITA (MPE, Германия), работающими по принципу рентгеновской оптики косого падения. Телескопы установлены на космической платформе «Навигатор» (НПО Лавочкина, Россия), адаптированной под задачи проекта. Основная цель миссии — построение карты всего неба в мягком (0.3–8 кэВ) и жестком (4–20 кэВ) диапазонах рентгеновского спектра с беспрецедентной чувствительностью. Обсерватория должна проработать в космосе не менее 6,5 лет.

Ранeе сообщалось, что человеческой жизни хватит на полет к созвездию Центавра.

Подписаться
Уведомить о
guest
0 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии